
N94-35071

Engineering Large-Scale

Agent-Based Systems

with Consensus

different approach to the construction of
large systems to run on these newplafforms.
In addition, there is an increased need for

faster and more intelligent systems, which,
however, need to be engineered t O the same
rigorous standards expected of systems de-

velo. ped for. more traditional imolementa-p.
tion paradigms. Consequently, there is a
need for methods which cover the following
points:

A. Bokma, A. Slade,

S. Kerridge & K. Johnson

Artificial Intelligence Systems Research Group,

SECS,

University of Durham
DURHAM DH1 3LE

e-mail: Albert.Bokma@d urham.ac.uk

D addressin the special needs of
knowledge_ased systems

[:] developing distributed solutions
Q reducing response times to meet

real-tim e-requirements

O meeting validation,, verification as
well as quahty assurance constraints

The Consensus method focusses on the de-

sign concerns of:

Abstract

The p p praer esents the Consensus method fdor the
development of large-scale Agent-Based Systems.
Systems can be developed as networks of Knowl-
edge Based Agents (KBA) which engage in a
collaborative, problem solving, e'ff. . .ortThe method
provtdes a comprehenswe and. mtegrated ap-
proach to the development of thls type of system.

This. includes a s;y.stematic analysis o_fuser re-
qmrements, as well as a structured approach to

generatin, g a s.ystem, desiszgn which, exhibits, the
desired functwnahtly. There ts a. direct corre-

s ondence, between system req.utrements, and
S_est n com onents The bene zts o thts a -g. p. .. ,/ ,f . p
proach, are that reqmrements are traceable., into.
dest!g..n com. ponents and code thus f,acdttatmg
verificahon. The use of the Consensus method
with two ma_'or test app .lications showed .it to. be
success. _ul and also. p_rowded, valuable, mszght
into problems typically associated with the de-
velopment of large systems.

1. Introduction

In .recent years there, has been a noticeable
shift from large mainframes towards net-
worked hardware architectures, requiring a

Q distributed knowledge based
applications

O systems of arbitrary size (typically

large scale)
GI real-time systems

A comprehensive method for the develop-
ment of such systems requires a systematic

a_ proach to. help the user to sp eci-fy a. solu-
tion for a given problem. In the design of

concurrent.. . Knowledge Based Systems CKBS).
it is important to handle both the techmcal
aspects of specifying systems, as well as the

organisational, aspect of mana g gpin ro'ects,
especially where the develo ment of lar e
systems are concerned. T_e Consensgs

method includes both a specification tech-

nique and a life-cycle model, although the
latterwill be covered in less detail.

The method specialises in the development
of large real-time applications, that build
concurrent knowledge based components
into an agent-based architecture, covering

the complete life cycle from concept through
to operation, and includes:

0 an analysis of the need and func-
tioning of the system,

Q the selection of design approaches

a pp.ro p riate .for the task,. .
Q detailed.. .design and. .ImplementatI°n'.
0 verification, vahdation and testing,

343

The Consensus method, is the result of re-

search into software development methods

and approaches, and has been refined

throu_li practical experience gained from
applymg the method to the development of
a large-scale application in Air TraTffic Con-
trol, as well as a second application con-
cerned with Dynamic TacticaI Planning.

2. Current Developments

There are a number of approaches which
have been influential in the formulation of
the Consensus method, which can be divid-
ed into three distinct areas:

O life-cycle models
D system specification
_1 KBS approaches

methods

There are various life-cycle models which
have been proposed over the years to help in
a ordered and systematic development and
maintenance of systems. Many of the tradi-
tional sequential models [ROY70] and their
variants have been found wanting as they

prescribe a one-way development process
which does not promote iteration and
feedback. This is a serious shortcoming as
there are a number of factors that have to be

weighed against each other in the process of

dev_lopin_g systems which both'fulfil the
needs and are feasible and well engineered.

The Spiral Life Cycle model [BOE88] has
embraced what is actual development prac-

tice, which the other life-cycle models have
tended to deny. As this approach is much
closer to actual development practices and
particularly suited for the development of
distributed systems Consensus has opted
for this model

The Spiral Life Cycle Model is iterative by
nature and therefore an iterative method for

system analvsis and design is required. One
s{tch method which has increasingly been
used in the last two decades is structured

analysis and design. Consensus has been in-
fluenced particularly by Hatley-Pirbhai
[HAT87], a complete specification method

for real-time systems which has been used

successfully in industrial and commercial
applications. It uses both structured analy-

s_s and design and proposes the joint devel-
opment of a system requirements model and

a system architecture model. The motiva-
tion shared by Consensus is that for success-
ful system specification one needs to balance
what the user wants with what can be done,

given the available implementation
technology. As Hafley-Pirbhai has been suc-
cessful in actual system development this

proved to be a good starting point for a sys-
tem specification method.

Hafley-Pirbhai also specialises in real-time

system development which Consensus is
also interested m although it. does not s.pe-
cialise in it. At the same time real-time

systems are becoming incerasingly wide-
spread and provisions that can be made for
them will prove useful in the future.
Amongst real-time extensions to the basic
structured analysis and design approach,
apart from Hafley-Pirbhai there are also
Ward-Mellor [WAR85] and DARTS

[GOM84]. There are no fundamental differ-
ences between the notations of Ward-Mellor

and Hatley-Pirbhai, which would have been
significant for Consensus (which adopts the
H-atley-Pirbhai conventions). By contrast,
DARTS has proven to be interesting as it
uses the concept of dividing the problem
solving activities into tasks. The guidelines
for the identification of tasks were useful for

another goal of Consensus, namely the iden-
tification of components which could engage
in collaborative problem solving and oper-
ate in a distributed fashion.

One problem with structured specification
methods including Hatley-Pirl_hai is that

they are geared towards procedural imple-
mentation paradigms. Consensus, however,
addresses ihe specification of parallel and

cooperating KBS. A different approach was
therefore needed to deal with the specific

needs of distributed systems. There are a
number of approaches which have been de-
veloped in recent years and may be thought
of as being relevant to Consensus. A
number of approaches, methods and tools
were examined. Amongst the different ap-
proaches the most significant for Consensus
was Cassandra [CRAB9] as it provides an ar-

chitecture paradigm specific for distributed
KBS, which fills the gap left in the architec-
ture model of Hatley-Pirbai.

344

Cassandra does provide a paradigm for de-
veloping KBS asnetworks of smaller knowf-
ed!g(ebased,components, embedded, in..a
collaborative system architecture. This satis-
fies the goal of Consensusto develop paral-
lel and cooperating KBS. At the same time
little help is given as to how to go about
specifying large systems and how to arrive

at a suitable system architecture., for a _'ven
problem. By combmmg the benefits of
these approaches and by adding the neces-
sary methodological support to steer the

specification process, the systematic specifi-
cation of distributed KBS can be achieved.

Adaptation of existing analysis methods
and experience from developing two major

test applications, helped, to fill. this gap and..
to _enerate gmdehnes to direct, the specifi-
cation process towards suitable system
acrchitectures.

In recent years a number of KBS technolo-
gies were developed. One of the most wide-
Iy known is KADS [SCH89] [DEH92], which

allows the modelling of the application do-
main from different perspectives with the
help of a number of interconnected models.
Other projects like Reakt [FJE92] and AC-
Knowledge [ACK92] have sought to enhance
KADS and to deal with issues such as real-

time..psecification and knowledge
acqms!stlon. Knowledge acqmsltion tools
will be useful for a nunaber of applications
but most tend to guide the specification
process towards emulating the application

domain. Although this., may. be desirable in
some cases the specification of large and
complex s stems requires to balance both
the need o?t_e user and constraints imposed
b software en ineerin rind les arid theY. . g .gP P
available Implementation technology. Struc-
tured analysis also uses a modelIing tech-
nique, but it is more flexible and allows the
developing of the requirements and archi-
tecture in a way that suits both the need of
the user and the constraints of the System.
The use of knowledge elicitation tools
should therefore be confined to the specifi-
cation of individual components whicfihave
a strong expert knowledge element that can-

not be addressed with structured analysis
alone. Alternatively, they can be useful as a

prototyl g'n tool to develo an operational
model of components to _etermme its be-

haviour and to ensure completeness of
requirements.

3. The Consensus Method

The purpose of the Consensus project is the
generation of a software engineering meth-
od for the development of large 15arallel

Knowledge Based Systems, this invo-lves the
development process, from conception
through to operation, including the recluire-
ments definition, the design of the solution

and the implementation-culminating in a
working system.

Consensus believes to have produced a
comprehensive, yet compact me-thod, which
is intuitive and easy to use while being ef-
fective enough to deal with large complex
applications.- 7 -

It's structured analysis approach facilitates

the develo..p.ment oflar g e tom p lex s y stems
by subdlvldm. . g them into manageable_parts
which can In turn be further analysedand
specified. It allows for systematic explora-

tion of the requirements find forces the ana-
lyst to focus on the specific requirements of

sub-components and their inter-relationships.

Given the current shift towards networked

architectures, distributed systems are be-
coming more common-plac-e. Distributed,
collaborative problem soIving is in step with
these developments and allo_vs exploitation
of the benefits of networked architectures;

the response of Consensus is to develop sys-
tems as networks of medium grain,sidled
knowledge based agents, which engage in a
collaborative probl6m solving activ_t}7.

Paired with this development is the in-
creased need for intelligent processing in

industrial and commercial applications-sat-

isfyin.gstringentsoftw_re uality
constramts. Thus the successful a_vlance of

Knowledge Based Systems especially for
large applications requires a distributedand
modular architectur6 and a method which

can deal with the specification of systems of
that type.

From a software engineerin, gp erspective,.
one consideration that is often overlooked is

that in order to develop successful solutions,

345

the analysis of desired fun.ctionality has to
be weighed against constraints imposed on
the solution by the unplementation plattorm.
Therefore, the analysis of requirements can-
not be divided from the specification ot tl_e

system architecture. Consensus adopts an
integrated approach where the require-
ments are developed in conjunction wfth the

design of the solution, thus ensuring that at
every stage of development the resulting
system fulfils the requirements while taking
account of the constraints.

The structured analysis and design ap-
proaches are used to provide a distributed
architecture of independent tasks which
communicate with other tasks in the overall

system process. These can in turn be trans-
lated it/to a network of distributed KBA.

Consensus combines a distributed agent ar-
chitecture with structured analysis and de-

sign providing a software engineering meth-
od for developing systems as networks of
KBA.

The kevconcepts that the method makes use
of, can'be summed up as follows and are de-
picted in figure 1:

[] the System Specification should
comprise not only the System Re-
quirements but also the System Ar-
chitecture - these should be devel-

oped together;
[] the System Requirements specify

what the system is to do andis in-

dependent of the implementation
technology;

[] the System Architecture specifies
how the system is to be structured
and is dependent on the implemen-
tation technology.

SYSTEM SPECIFICATION

Figure 1: System Specification

The System Requirements and System Ar-
chitecture are considered together, starting
with a high level model of the system, and

346

proceeding by refinement and iteration until
a detailed, complete and comprehensive

specification of the system is produced.

The primary benefit of this approach is that
early partitioning and allocation of func-
tions in the system helps to identify critical

functions, which can be. proto, ty_ed or re-
appraised, thereby leading to a clearer un-
d-erstanding of the need and the best way to
structure the design. This results in a com-
prehensive and integrated system develop-
ment process and favours traceability and
consistency which are vital in the develop-
ment of large, complex systems.

3.1 The Requirements Model

Problems are frequently too large and com-
plex for solutions to be developed in one
step. The overall problem can be considered
as a complex tas_ and can be more readily

tackled by partitioning it into a number of
sub-tasks together w-ith an indication of
how these sub-tasks interact with each other

in order to solve the problem. This process
of partitioning, when applied repeatedly,
reduces the complexity of an individual sec-
tion to a level where theproblem can be
more easily understood andspecified.

The purpose of requirements analysis is to
spedfy the requirements as opposed to tie-
signing the software components, the focus

is on what the system must do and not on
how this is achieved. The result of applying
this technique is the generation of a model of
the problem to be addressed.

As information flows through a system it is

transformed: the system can accept a varie-

ty of different forms of input and applies
hardware, software and human interaction
in order to transform the input into output.
Structured analysis is a technique for mod-

elling the flow and content of information
by subdividing the overall task performed
by the system into a series of individual
processes. In the modelling process three
different models are used:

[] Data Flow Diagrams - These speci-
fy how data flows through the sys-
tem and is being processed.

Q C_.ntrol Flow Diagrams - Many apt
plications are time-dependent and
process control information rather
than data. Optional additional con-
trol flow diagrams specify flows of
control information and control
si nals

Q S_te Transition Diagrams - These
describe the different states of a

process and the transitions between
states. They can be used during val-
idation to ensure that control speci-
fications are complete.

A process is the encapsulation of some re-

quirements which perform a specific task. A
software system can be represented as an in-
formation process and the overall function

of the system can be graphically represented
as a single process, with a number of inputs
to the system from external entities and a

number of outputs of the system. As depict-
ed in the figure below, the process can be

graphically represented as a bubble and the
external entities as rectangular boxes. The
process is connected to th_ external entities
via arrows which represent data-flow as

well as flow direction," thus denoting inputs
and outputs.

The single process can be broken down into

a number of smaller processes together with
data-flows between them. Each of the proc-
esses thus identified can then be further
broken down and so on. Data Flow Dia-

grams (DFD) are a graphical representat!on
depicting data flows and processes which
are applied to the data in the process of
transtormation from input to output, and
may be used to represent the system at any
level of abstraction. This means that it is

possible to generate a hierarchy of data flow
diagrams to depict the system at arbitrary

levels of abstradion. The aim of the Requird-
ments Model is to generate such a hierarchy.

The development of the Requirements Mod-

el proceeds-top-down, from" the most gener-
al abstraction to the most specific in a series
of levels. By convention the diagrams are la-
belled, starting from level 0 to level n. Level
0 represents the system at the most general
level. It is also known as the context dia-

gram, representing the system as a single
process snowing its connections to external

entities, as depicted in the figure below:

Figure 2: A Sample Context Diagram

In the process of breaking down individual
processes it is essential to maintain the ex-

Isting flows which connect to. the. parent
process. The fundamental pnnople is that
the connections are inherited from the par-
ent process. Thus a check is carded out to

ensure that the flows of the parent process
are equivalent to those of the childprocess-
es, and is called balancing. In addition to
inherited flows, new flows need be intro-

duced to interconnect the child processes.
All components depicted on the diagram

need to be labelled (for reasons of clarity
these labels have been omitted from the

sample dia ams) and explained, in separate
process an_rt_ow descriptions which are en-

tered in the requirements dictionnary. The
figure below shows a sample l_evel 1
diagram:

ra_ ControllerT Console

l"ralt¢ '_

• t

Secondary Controller
Radar Commands

Figure 3: A Sample Level I DFD

Processes are labelled with a name and a

unic_ue nested numbering system indicating
the level and parentage of the each process.
There may be a need _or data-stores'to tem-

porarily store data required for further

347

processing. _ These are denoted by two hori-
zontal parallel lines with the datastore name
in between, as well as arrows to and from

them to indicate which processes modify or
read the information contained in them.

Once a point is reached in the analysis
where a process cannot be usefully decom-
posed further, it is specified by a process
specification (PSPEC_which is readily im-
plementable and describes how the inputs
of the process are transformed into the
outputs. Processes at this level are known as
primitive processes. It may take the form of
pseudo-code or a function to describe the al-
gorithm used to carry out the transformation.
At this point the decomposition stops for

that process. The decomposition however
continues for all other processes until a
point is reached where all processes are
brimitive and specified by their respective
I_SPECs. Once Lhis point-is reached the hi-
erarchical set of DFDs that have been pro-

duced for the system are complete. The
PSPECS are then gathered in a separate sec-

tion for process definitions.

There are a number of applications which
are time-dependent and may process more
control info'rmation than dht_. Real-time

systems in particular interact with external
entities on a time frame that is dictated ex-

ternally and this places a number of impor-

tant constraints on the demands of the s_'s-
tern specification technique. In particular
such a technique has to allow the analyst to
represent control flow and control process-
ing as well as the usual data flow and
processing, which is achieved bt Consensus.

In order to distinguish normal data flows
and processes from control processing,
some'additional notation is req'uired. Thu"s
control flows are used to describe the flow of

control information and continuing the con-
ventions established for data flow and

processing, control flows are denoted by a
dashed line as opposed to a solid line. A
process that handles only control flows is
called a control process, again denoted by a
bubble with a dashed line, and associated

with each will be a control specification

(CSPEC). The appropriate descriptions of

control processes and flows needs to be en-
tered in the requirements dictionnary (and
the associated CSPECs entered).

Control flows and processes are crucial to
the behaviour of a system, and there are two

ways in which the appropriate functional
behaviour can be defined. A Program Acti-

vation Table shows the different permuta-
tions of states and the actions taken in each

case to ensure that all possible states have
been covered and receive the appropriate
action. Alternatively, State Transition Dia-

_rrams (STD) can be used to give a behav-
Ioural model of the control process which
shows the different states the system maybe
in and the connection between states. The

latter is of particular si_;nificance for the pur-

pose of verification. The use of STD (other-
wise known as finite state machines) can be

extremely powerful, but this observation is
not widel_y a preciated, especially in current
approaches _o]r the development of KBS.

In some applications system inputs must be
received at a certain rate and sytem outputs

generated within a given time. These re-
quirements are termed timing requirements
and are associated with specific flows and

processes. There are a variety of potential
timing requirements from less strict re-
sponse times to user input for interactive
interfaces, to strict output rates of real-time

and safety critical systems. An indication
should therefore be given as to whether or

not particular timing requirements are
critical. Timing specifications connect spe-
cific input and ou_ut events. As a result
there needs to be a list of input events and
the respective output events and the timing
relations between them. "

3.2 The Architecture Model

The Architecture Model is developed in con-

junction with the Requirements Model, de-
scribing and defining the system in terms of
the implementation platform. The process
of functional decomposition should pro-
duce collections of functions, which can be

grouped together into separate I_rocesses
which can work concurrently, ana collabo-

rate by communication towards the overall

goal of the system.

The Consensus method specialises in the de-

velopment of parallel KBS architectures,
where a collection of interconnected KBA

348

collaborate to meet the requirements of the
application. These independent KBA com-
municate via pre-defineddata channels and
co-operate towards the system's goals.

The of the Architecture Model is
bothPurp °seto translate and map the requirements
into actual system components, as well as to

guide the re quirements, anal. y sis. to take into
account potential constraints imposed by

the. tar. g pet latform. It may be possible to
identify groups of potentially concurrent
functions at different degrees of resolution,
and as the decision on this matter is more

dependent on implementation constraints it

needs to be based on the system Architec-
ture Model. The aim is to achieve a specifi-
cation which fulfils the requirements and is
implementable. There are three important
aspects provided by the ArchitectureModel:

Q an architecture paradigm for large,
parallel KBS

CI a.mapping of requirements into de-
Slgn corn p onents

[] feedbacl_ to help reject unfeasible
requirements

The construction of large KBS as a single,

monolithic system presents p.roblems for a
number of reasons. The execution of KBS is

not strictly procedural by nature, and an or-
der of processing may have to be enforced to

meet requirements. Conflicts may arise
when different knowledge sources or rules
want to execute on the same data, thus in-
terfering with each other. The risk of these

situations occurring becomes more acute as

systems increase in size. In addition, large
monolithic systems may be too slow to meet

real-time p.erformance requirements. An
approach which leads to the development of
modular systems, which can execute con-

currentl, y on a distributed.. platform, and
which can deal with interference problems
is therefore preferable. The Consensus
method buildssystems as collections of con-

nected knowledge based agents (KBA),
each with the same basic structure

containing:

[] a local blackboard

[] local knowledge sources
[] a local controller
[] communication channels

Figure 4: A KnowLedge Based Agent

The local blackboard contains data and re-

suits of processing. Access to it is restricted
to the local knowIedge sources and control-

led by the local conffoller. Each KBA has a

set of local knowledge sources which per-
form the tasks assigned to that KBA. They
operate solely on the information contained

in the local blackboard and may recjuest the
local controller to communicate with other
KBA to transfer data. The local controller is

in complete control of processin_ at a local

level within the agent. _t schedules the exe-
cution of local ki_owledge sources which
operate on the local blackboard and initiates
communication with other KBA on behalf of

its knowledge sources as well as receiving
messages and posting them to the local
blackboard.

The KBA which make up a particular system
are connected by pre-defined communica-
tion channels. A number of important con-
straints are imposed on the communication
mechanism in order to preserve the benefits

of modularity and redhce interference be-
tween individual KBA. Thus communica-

tion with other KBA is managed by the local
controller on behalf of its knowledge sourc-
es, and no other contact between KBA is

allowed. These constraints are designed to
help ensure consistency between KBA and
in avoiding deadlock.

There are a number of important properties
of this architecture that are relevant to the
aims of Consensus:

O Modularity: Designing systems as
collections of autonomous agents

encourages a partitioning of the sys-
tem into clearly defined system
modules.

Q Information Hiding: hiding the de-
tails and data of each KBA from the
view of other KBA avoids uninten-

349

tional interference by one KBA with
another.

El Deadlock Avoidance'. insisting that
the communication between KBA

occurs indirectly, avoids direct in-
terference between KBA, their data

and control and is designed to re-
duce the risk of dead-lock. Although

it is difficult to completely rule out
deadlock, tests can be carried out to

spot circular dependencies.
El Traceability." A direct., mapp.ing

from _eneral to specific require-
ments, and a direct mapping" from

specific requirements to system de-
sign components and code ensure
traceability of requirements.

Q Concurrency: Developing systems
with an agent based ar-chitecture is
an effective approach for building
systems as sets of independent co-
operating modules which are inher-
ently concurrent and parallel.

Developing the Architecture Model

In accordance with the framework provided

by the system specification, there is a close
correlation between architecture and re-

quirements, where processes in the require-
ment model will have corresponding enti-
ties in the Architecture Model and Vice-

versa. It is the purpose of the system Archi-
tecture Model to:

El identify the set of agents which form

the system
El define the information flow between

the agents in the system
El specify the channels on which the

information flows

In the process of developing the system ar-
chitecture the decomposl'tion and specifica-
tions roduced b the s stem re uirements

P Y Y q . f
are used as the basis to develop the design o

the system. The requirements which specify
what the system is to do need to be trans-
formed into a viable design. As KBA are
more coarse _rained than the primitive

processes identified and specified'in the Re-
auirements Model, one needs to _roup com-

l_onents identified there into KBA v whI_ch can
operate relatively independently and in
parallel. This process includes the identifi-

cation of KBA, mappin_ requirementsto in-
dividual KBA and specifying the intertaces.

As the Requirements Model is developed so
the development of the Architecture Model
follows one step behind to try identify a

suitable system design, which fulfills the re-

quirements while taking into account exter-
nal constraints. The second role of the Ar-
chitecture Model is to force the develoment

of the Requirements to take account of limi-
tations in the specification process.

Starting from a global view of the system in
a "first-cut" approach, the design needs to be
refined and _nalised to a point where ulti-

mately it is very close to source code. The

process of design of the system architecture
takes the decomposition of DFDs from the

Requirements Model and performs a trans-
form analysis.

One has to determine properties of the DFDs
which are important to a candidate system
structure with a view at arriving at a suitable
architecture that meets both f_nctional re-

quirements and additional constraints im-
posed by the implementation platform
_where the platfor_n includes both _e target
hardware and software). The following

steps help drive a design:

1) Review of the DFDs: The review

looks at the DFDs with the purpose of

exploring the fundamentalstructure
and characteristics of the system. It is

important to familiarise oneself with
the Requirements Model (especially if

that is developed by another team) and
to understand the structure of the re-

qtuirements which may influence the
ructure of the design, and secondly,

to consider the properties of the target
platform in order to try to identify re-
quirements or their decomposition
A • a ewhich could create problems. If ther
are problems, the affected components
need to be re-developed either at the
present level or at the parent level to

_roduce a new decomposition. The

e"arlier problems are idehtified the eas-
ier it is to redevelop the affected

components

2) Analysis of Flow Characteristics: In
the next step the DFDs are examined to
determine whether they display trans-

350

3)

form or transaction characteristics by
the following definition. If a DFD
shows a chain of transformations

where incoming information is gradu-
ally modified and transformed into an
outgoing flow, the diagram is said to
display a transform characteristic. Al-
ternatively, transaction flows are char-

acterised by processes which have only
few inputs'but a range of action paths
to different processes.

Preliminary Grouping: If the DFD
displays transform characteristics, the
transformation centre needs to be iso-

lated from the incoming and outgoing
flows. Three main parts are thus-lden-
tified: inflow transforms, the transaction

centre, and the .outflow trans._orms are
candidates for Implementation as sep-
arate KBA, producin, g an incoming
flow controller which co-ordinates the

receipt of incoming data, a transform
controller supervising the main trans-
formation of data, and an outgoing
controller co-ordinating the generation

of the output information. -
Alternatively, if the DFD displays

transaction characteristics, the trans-
action centre needs to be identified and

is characterised by a number of action
paths that flow radially from it. The
_ece tion ath leadin to the transac-• P P . g
hon needs to be isolated and so do the

separate action paths leading out from
the transaction centre. Each of the re-

ception and despatch, or action paths
need to be re-examined to determine

whether they have, themselves, trans-
form or transaction characteristics.

Each of these components identified

are candidates for implementation as
separate KBA.

of a KBA to a large number of other
KBA should be avoided.

KBA should have a clear purpose

and function and candidates ldckifig in
this respect may need to be redefined,

or.maypoint to roblems in the Re-
qmrements Mode_.

The candidate KBA identified in the

preliminary grouping step need to be
anal sed concernin their size andY . 8
complexity, to determine whether they
are rich enough to be implemented as
separate KBA-or whether they need to
be subdivided. This decision can be

taken once the next level decomposi-
tion is known and the next iteration of

the design process is carried out.

Overall Review of Design: The em-
phasis in the initial architecture speci-
fication stages is on analysis of the re-
quirements from an implementation

perspective, to ensure that the require-
ments definition does not contravene

constraints imposed by the target
platform. In later stag6s candid/lte
KBA are identified, and finalised in an

architecture diagram once the decom-

position of tile requirements is
complete. During the review, one
needs to decide whether previously
identified KBA are viable on their own

or whether they need to be further

divided. In addition, the mapping of
the processes from the DFDs support-

ed b y the re q uirements., dictioxiar y,
needs to be specified in the architec-

ture. dictionnary. Architecture. consid-
erahons may also influence the next
level of decomposition of the require-
ments once external constraints be-

come apparent.

4) Review of Grouping: The prelimi-
nary architecture is analysed, to con-
sider whether the proposed KBA are
sufficiently large and complex to be vi-

able as separate KBA. The scope of the
proposed KBA should be reviewed to

reduce coupling and increase cohe-
sion:

Grouping should try to minimise
the number of communication chan-

nels; processes which are highly con-
nected should be in the same KBA.

High fan-out from the outgoing flows

Once the transform and transaction analysis
has successfully been completed and-the
KBA have all been identified, the architec-

ture diagrams can be finalised. At this point
the additional documentation known as the

architecture dictionary needs to be complet-
ed and contains the following:

G] a definition of each architecture

component depicted on the
diagrams

D a definition of each architecture

flow connecting KBA

351

Q a definition of each architecture
flow to external entities

a narrative description of each KBA

The purpose of the narrative is to give a brief
descrip_on of thepurpose and functionality
of each KBA. In addition a precise statement
is required to associate all the components of

the Requirements Model inherited by the
K'BA. This is an important step to allow ver-

ification as weI1 as helping durin_
maintenance. The local data structures neea

to be defined. The precise interfaces and
communication mechanisms also need to be

specified for the communication channels
between KBA to allow the separate develop-
ment of KBA by different teams. Finally,
attention needs to be given to critical func-
tions to ensure that they will not cause
"bottle-necks" in the implemented system,
thus limiting the overall-performance of the

system especially if there are real-time
constraints.

4. Decision Support for ATC

The Consensus project has developed a test
application which implements a aecision
support system, designed to help air traffic
controllers in their task of safely controlling
air traffic in their sector (based on [BEL88]).

The system, known as the ATC Worksta-
tion, specialises in en- route air traffic con-
trol, i.e. air traffic control for sectors which
do not contain aerodromes and where air-

craft will pass through on their way to their
final destination. The system also includes a
simulator to simulate air traffic for testing

and training purposes.

The controller workstation provides an inte-

grated set of tools to support the en-route
controller. These include the following:

[] A Predictor 2.1 which, given the

current aircraft position and the cur-
rent flight plan, predicts the courses
of aircraft and warns of potential
conflicts.

[] The Wotifer 2.2 which enables the
controller to plan new routes for air-
craft which need to be re-routed,

Q

O

Q

while assessing the consequences of
candidate new plans in the light of
the current air traffic situation.

A Communicator 2.4 to provide
electronic communication -link be-
tween the controller and aircraft
under his control.

A Monitor 2.5 to check the progress
of aircraft, to warn the controller
about aircraft which deviate from

their flight plans or behave
abnormally.

The Man Machine Interface 2.6
which handles the user interface re-

lating information from the separate
tools to the controller and directs the

controller input to the appropriate
tools.

The system operates an ATC workstation
and, apart from the decision support func-
tions, emulates a typical working
environment.

Figure 5 shows the top level decomposition
of the Requirements Model for the ATC
workstation, followed by the further decom-

position of the Wotifer in Figure 6.

The basic functions of the Wotifer is to rec-

ommend possible routes to the controller, to
check the feasibility of candidate routes and
to allow the controller to modify them at lei-

sure and finally to accept one of them as the
new flight plan for a particular aircraft.

Supposing a wotif is requested for an air-
craft, the Wotifer goes through a number of
steps. This involves the collection of all
routes from present position to the required
destination and pruning all plans the air-

craft is not capable of following. Checking
the remaining plans for compatibility with
current air traffic situation, one has to select

the best routes and to give them to the con-
troller to select and/or modify. It may then
be useful to store routes which are amended

b_, the controller for future reference and ob-
viously to file the route selected by the con-
troller as the new flight plan for the aircraft.

The decomposition of the Wotifer was based
on the sequence of steps required to carry

352

Figure 5." DFD Level I Decomposition of the ATC Workstation

kbas

r_ L_ #

rk_t

l-

hu_

Figure 6: DFD Level 2 Decomposition for the Wotifer 2.2

['---"-''-L_ C_tI(l

I_t T,_, I_'_ _ J

I##

I_,t,._ I c.tll:t- I_,,_i,,,, _ q_ : . . I

Figure 7: KBA Design for the Wotifer 2.2

353

Figure 8: KBA Architecture of the A TC Workstation

out the task of planning and replanning of

routes for given aircraft. The different proc-
esses depicted represent the major steps in
that process.

This results in the following processes spec-
ified in the Level 2 decomposition shown in

figure 6:

O Collect Route 2.2.1 identifies all

possible routes which would take a
specified aircraft from its current
position to the point where it wishes
to leave the sector.

O

O

[]

Ability Check 2.2.2 checks that the
aircratt in question can perform the
manoeuvres required.

Long Term Conflicts 2.2.3 identifies
the more obvious potential conflicts
that would be caused if the route in

question was adopted as the air-
craft's new flight plan.

Short Term Predictions 2.2.4, in

conjunction with the Predictor cal-
culates the precise conflict points for

the next 20 minutes.

D Wotif Displays 2.2.5 calculates char-
acteristics about a route to be pre-
sented to the controller and sends
them to the MMI.

D Adapt Route 2.2.6 deals with the re-
sponse from the controller and deals
with modifying, accepting and sav-
ing a route.

In the identification of KBA from the decom-

position of the System Requirements, one
aim is to exploit parallelism where ever

possible. Thus, if _process can perform an
action at the same time as another, this may

be a reason for not j'oining them into a sing.le
KBA. In this case, the routes are processed
sequentially, and it is possible for the Collect
Route 2.2.1 process to collect a route and
pass it onto the checking process Ability
Check 2.2.2 which can then pass it onto the
Long Term Conflicts 2.2.3 process which, in
turn, canpass it on to the Short Term Pre-
diction 2.2.4 process.

354

The processescanbe pipelined to operate in
parallel and in this case it meant that they
were kept as separate KBA. The other two
processes only process information when all
routes have been processed. They work on
the same information (Recommended
Routes) but at different times, and because

of the information sharing and asynchro-

nous. p.rocessing the processes were joined
mto a stogie KBA.

ware and software platform considerations,
modularity and logical partitioning of the

System Re. quirements and Architecture,.. .
considerations of concurrency, distribution

and p.erformance,, as well as performance
conslderataons and the h-andling of
datastores.

One problem that needed to be overcome
was to determine what to do with the da-

tastore of possible routes (Routes), which

are used b y the .collectin gp rocess but u pcdat-
ed by the modify process. One couldhave
used a separate KBA, but the information is

not used in many different places and does

not chan. ge a great deal. It was the fact that
the information does not change much
which led to the decision to put the da-
tastore together with the collect process.
This led to five separate KBA which could
work in parallel.

In Figure 7 the overall architecture of the
ATCWorkstaffon is depicted (note that S =
Simulator, SI = Simulator Interface and W =

WindowingSystem), thus combining the
Wotifer Architecture with the other compo-
nents of the system:

To conclude, the ATC System, including the
simulator has a number of interesting staffs-
tics which demonstrate its size and

complexity:

[] 29 individual UNIX processes (in-
cluding the Simulator and a C front
end)

O networked on 3 to 13 workstations

[] communicating via 174 socket
connections

[] 350 class definitions, 450 rules and

400 procedures
O about 3.5 man years of effort

This shows the ATC system to be a substan-
tial application. The Consensus method
gained considerably from this realistic test
application by ensuring that the provisions

capable of dealing with systems of this size
and complexity, as well as giving valuable
input for the generation of suitable develop-
ment guidelines in the areas of the architec-
ture of knowledge based components, hard-

5. Conclusion

The Consensus method fills a gap in the cur-
rent field of software engineenng, provid-
ing a comprehensive and _ntegrated lnethod

for the development of large agent-based
systems. As the Air Traffic Control applica-
tion shows, agent-based systems can be
successfully applied to systems which are
relevant to current needs. The method cov-

ers the whole process from the statement of
the user's need, to a detailed specification
and through to implementation_ The grad-
ual progression from basic user require-
ments to a more refined specification with
the help of a diagrammatic approach allows
the customer to verify their requirements.
The direct mapping from detailed require-
ments to system architecture and process

specification also facilitates valiaation.

lhere is a strong em_phasis on sound soft-
ware engmeering principles in the system
development process.

The application of Air Traffic Control is ex-

emplary for a range of possible applications
in the domain of aerospace and the experi-
ence gained by theproject shows that

Agent-Based. S.y stems have. considerable.. p o-
tential to provide solutions In this area.

There are a number of reasons for using dis-

tributed systems.. of. this. kind, one of which is
the fact that It is difficult to conceive of using

mainframe com. putere, on board an air- or
space-craft. Given high processing require-
ments and the need-to-keep we-ighf to a
minimum, the use of a numbe_of neF, vorked

processors would therefore apear to be
much more appealing. Considering that
systems on board, say, a shuttle have a
number of distinct functions to fulfill, such

as (amongst others) manoeuvering the craft,
life-support systems, communication with

ground-based systems and aiding in scien-

355

_tific tasks, it seems sensible to divide a sys-
tem to combine these functions into entirely

separate sub-systems which could run on
different processors and communicate with
each other as and when necessary. This

could be combined with a separate control

system to supervise the proper functioning
of these separate sub-systems, and which

would take appropriate action when prob-
lems areise. Given the need to avoid mal-

functioning at all cost, such a distributed

system could also be made to be more resil-
ient than a monolithic system as the mal-

functioning of a sub-system would leave the
other sub-systems still operative and enable

the control system to take corrective action
to re-establish full functionality. In addi-

tion, given stringent real-time requirements
the lack of performance of one sub-system
need not necessarily affect the performance

of other sub-systems.

Bibliography

[ACK92] A Anjewierden, B Wielinga & N Shadbolt:

Supporting Knowledge Acquisition: The ACKnowl-

edge Project, ESPRIT-92 Knowledge Engineering,

(Eds. L Steels & B Lepape)

[BOE88] Boehm B W, A Spiral Model of Soft-

ware Development and Enhancement, IEEE, May

1988

[CRAB9] Craig I D, The Cassandra Architec-

ture, Distributed Control in a Blackboard System.

Ellis Horwood, 1987, ISBN 0-7458-0579-5

COU9I] Coulson I.C. et al., "Design Document D7",

Consensus Report No. CNS-BAE-WIT-3.1-INT-IDC-
056A.

[JOH91] Johnson K & Slade A, ATC Design Docu-
ment, Wotifer 2.2, August 1991, Consensus Doc No.

CNS-DUR-DCS-3.1-INT-KJ-052A

[JOH92] Johnson K. & Slade A, 'Consensus Meth-

odology Standards', Consensus Report No.
CNS-DUR-CSC-6-INT-KJ-083B.

[HAT88] Harley D & Pirbhai I, Strategies for

Real-time System Specification, Dorset House, 1988

[KAD89] Taylor R M (Ed.), System Evolution

-Principles and Methods, KBS Centre of Touche Ross

Management Consultants, London, December 1989

[STAB7] The STARTS Guide to methods and soft-
ware tools for the construction of large real-time

systems, NCC Publications, Hobbs Southampton,
1987

[FJE92] Fjellheim R, Pettersen T & Chriastoffersen B,

REAKT Application Methodology Overview,
ESPRIT-IIP5146 REAKT, Computas Expert Systems

A.S, October 1992, CX Doc.# CXN92125

[ROY70] Royce W, Managing the Development of

Large Software Systems: Concepts and Techniques,

Proceedings of WestCon, August 1970, (Chapter 3)

356

